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‡ Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania

Received 3 February 1995, in final form 22 September 1995

Abstract. The dependence of the escape time on the deviation from the critical point is
investigated for the noisy on–off intermittency. The power-law scaling behaviour is destroyed
by the noise in a wide region above the critical point. In the general case the width of the region
decreases logarithmically with the decrease in the noise amplitude. Below the critical point the
noise induced escape time is sensitive to the statistical properties of the chaotic driving signal.
Universal exponential dependence holds only for the Gaussian approximation.

1. Introduction

A particular case of an intermittent bursting, recently called on–off intermittency [1], has
been predicted for chaotic dynamical systems [2, 3]. A distinguishing feature of dynamical
systems having this type of intermittent behaviour is the existence of a smooth invariant
manifold in the system’s phase space. Below the critical value of a control parameter the
dynamics of such a system is chaotic, but completely confined to the smooth manifold
having integer dimension less than the dimension of the phase space. At the critical
parameter value the smooth manifold loses its stability and blow-out bifurcation takes place
[4]. Correspondingly the dynamics starts to depend essentially on the structure of the phase
space far from the manifold. If there is a stable attractor outside the manifold, trajectories
leaving the unstable repellor on the manifold are to be confined to this other attractor.
The intermittent bursting does not occur in this case of hard [2] or hysteretic [4] blow-out
bifurcation. However, if there are no stable attractors outside the manifold, the trajectories
leaving the vicinity of the manifold can return after some time. The dynamics of the system
in this case of soft or non-hysteretic bifurcation consists of short excursions to the outside
regions of the phase space and of long ‘laminar’ phases during which the trajectory stays
close to the manifold. While being related to the specific structure of the phase space,
on–off intermittency has some common features with both Pomeau–Manneville [5] and
crisis induced chaos–chaos intermittency [6, 7]. First, it can be considered as a chaos–
chaos intermittency, since the dynamics during the ‘laminar’ phases, as well as during
chaotic bursting, is chaotic. Second, choosing the distance from the invariant manifold as
a dynamical observable, the dynamics looks like fixed point to chaos intermittency. This
choice is natural in the case of synchronization of identical chaotic systems. In a typical
experiment such as that of spin–wave instabilities [8] this particular observable does not
correspond to any of the experimentally given observables. In these situations phase space
reconstruction can be necessary to detect intermittent behaviour which is not obvious from
the ‘natural’ observables. Such sensitivity to the choice of variables is typical for chaos–
chaos intermittency.
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On–off intermittency is expected to be a common phenomenon in dynamical systems
having a symmetry such as coupled identical maps [2, 3], chaotic driving [9], chaotic
synchronization [10] or maps generating identical attractors [11]. When using special
coordinates all these discrete time systems can be represented in the following form:

rn+1 = g(xn)rn + O(r2
n) (1)

xn+1 = F(xn) + O(rn). (2)

In this representation the variablesrn andxn define the distance from the smooth invariant
manifold rn = 0 and the dynamics on the manifold respectively. In the general case both
rn and xn can be vectors. A particular case of the equations (1) and (2) with continuous
time dependence has been studied in [4]. Similar intermittent bursting can also be observed
in the case of random maps [12, 13] or multiplicative random driving [9]. In the latter case
the dynamical drivingg(xn) in equation (1) is replaced by a random signal.

In previous work on the statistical properties of the on–off intermittency the main
attention was concentrated on the estimation of the distribution of the variablern [2, 3, 14] or
the size and dimension of the snapshot attractors in the case of random maps [12, 13]. Only
recently the first results on the statistical properties of the laminar phase lengths, usually
estimated in experiments with intermittent dynamics, have been presented [9]. It was shown
analytically for the random uncorrelated driving and numerically for chaotic driving that the
average of the duration of the laminar phases depends on the deviation from the critical point
|v −vc| via the power law〈τ 〉 ∼ |v −vc|−1. The distribution of the durations of the laminar
phases shows power-law behaviour as well, with an exponent−3/2. The same exponents
characterize Pomeau–Manneville type III intermittency in the case of a cubic nonlinearity
and uniform reinjection. Chaos–chaos intermittency with the statistical properties of type III
intermittency has been detected in the spin–wave experiment [8]. This seems to be the first
experimental observation of the on–off intermittency. Electronic circuit experiments with
external random driving have also been reported recently [15].

For the experimental identification of the on–off intermittency it is very important to
know the statistical properties in the noisy case, hence a small random noise is added
to equation (1). In coupled nearly identical systems the small differences between the
systems also lead to the small additional term in equation (1) with the chaotic ‘noise
like’ dynamics [14]. The distribution of the durations of the laminar phases for the noisy
on–off intermittency has recently been calculated numerically and discussed by Plattet
al [16]. Characteristic times of the exponential decay in the distribution function have
been estimated analytically by Ottet al [17]. Another important characteristic that can
be estimated in an experiment is the dependence of the averaged laminar phase duration
on the control parameter and on the noise level. It is determined by the properties of the
escape timeτ . In this paper we present a detailed analysis of these dependences for the
noisy on–off intermittency and show that both parameters are relevant. In section 2 the
model is described. Analytic results for the Gaussian approximation of the driving signal
based on the Fokker–Planck equation are presented in section 3. Numerical examples for
various chaotic driving signals given in section 4 show that deviations from the Gaussian
distribution are important for the noise-induced metastability below the critical point. An
estimate of the escape time for the non-Gaussian case and conclusions are given in section 5
and section 6, respectively.
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2. The model

We will investigate the dynamical system (1) and (2) in the presence of small additive
noiseη. For simplicity we consider the model with linear drivingg(xn) ≡ axn:

rn+1 = axnrn + ηn (3)

xn+1 = F(xn) (4)

which contains all essential features of noisy on–off intermittency. (A more complicated
driving function g(xn) will be used in two numerical examples presented below.)
Equation (3) can be considered as a dynamical system driven by two stochastic forces
xn andηn. In this model stochasticity of the multiplicative driving is related to the chaotic
dynamics of the mapF and stochasticity of the additive driving is related to the extrinsic
noise. The main results of this model, however, are valid also for other models like random
maps [12, 13], when both multiplicative and additive driving forces are random. For coupled
nearly identical chaotic systems both driving forces are stochastic due to the intrinsic chaotic
dynamics of the mapF .

The laminar phase duration for intermittent dynamical systems is calculated by averaging
the escape time, i.e. the time necessary for the system to pass the thresholdrth starting at
point r0 < rth, over the probability of reinjection atr0. Small enough values of the threshold
rth should be chosen to observe universal scaling properties. In the Pomeau–Manneville
case escape time is defined by the type of intermittency and values ofr0 and rth alone,
while the reinjection probability depends on the dynamics far from the fixed point and is
usually assumed to be uniform. In the case of on–off intermittency the time necessary to
pass the thresholdrth starting at pointr0 < rth may vary strongly due to dependence on the
realization of the driving signalxn. The dynamics of the variablern is more similar to a
random walk or diffusion than to a deterministic process. In this situation the escape time
is the first passage time[18], i.e. an appropriate average over the ensemble of the times
needed to pass fromr0 to rth.

The diffusional process of the linear equation (3) will also describe reinjection to the
region below thresholdr < rth. For small threshold values this linear process completely
determines the reinjection probability and nonlinear terms are important only to ensure the
boundedness of the system. It is natural in this case to assume that the probability of the
reinjection is concentrated in the narrow region close to the threshold. This assumption
becomes invalid only for large amplitude of the driving signalsxn. Moreover, as will be
shown later, the escape time—apart from exponential tails—depends onr0 only in a non-
sensitive way, namely via lnr0. Therefore we may write for the escape time when averaged
over the reinjection probability

〈τ 〉 ≈ τ(r∗) r∗ = exp{〈ln r0〉} (5)

wherer∗ is close to the threshold valuerth. As a result this averaged escape time will show
generically the same structure as the escape time for a givenr0.

Additive noiseηn in equation (3) dominates for smallrn and can be neglected for large
rn. The most important consequence of the presence of noise is that the noisy system
cannot stay at the noise-free fixed pointrn = 0. A simple way to model the influence of
additive noise [16], is to add a reflecting barrier at the small levelrb proportional to the
noise amplitude. Replacement of the noise termηn by a boundary condition allows us to
use the methods of analysis similar to those which have been used earlier in the noiseless
case [2, 3, 14]. Introducing the logarithmic variableyn = ln |rn|, equation (3) becomes

yn+1 = yn + ln |xn| + ln |a|. (6)
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It follows from equation (6) that the critical parameter value is

|ac| = exp(−λ) (7)

whereλ = 〈ln |xn|〉 with 〈. . .〉 denotes the time average. In the case of coupled identical
one-dimensional maps one hasg ≡ a dF/dx in equation (1) andλ corresponds to the
Lyapunov exponent of the single map.

Close to the critical pointv = (a − ac)/ac � 1, equation (6) can be rewritten as

yn+1 = yn + v + βn (8)

where the new variableβn = ln |xn| − λ has zero mean value〈βn〉 = 0. Map (8) represents
a biased ‘chaotic’ walk [9] whereβn is a chaotic variable, usually exponentially decaying
but still having finite correlation length. Close to the critical point typical escape times
are large and completely determined by the long time behaviour. This behaviour can be
obtained from theN th iteration of the map (8) which has the same form as the original one
with a properly rescaledyn and the driving variable

3n = N−1
N∑

k=1

βnN+k. (9)

For largeN the variables3n can be assumed to be uncorrelated and to have—according to
the central limit theorem—a probability distribution [19]

PN(3) ∼ eN9(3). (10)

For many driving systems the distributionP(3) can be approximated by a Gaussian
distribution corresponding to9(3) = −32/2D with D = limN→∞(N〈32〉). The escape
time for the Gaussian driving can easily be calculated using standard methods. This will
be done in the next section. The non-Gaussian case is discussed in section 5.

3. The Gaussian case

For analysing the long time behaviour the map (8) is replaced by the corresponding stochastic
differential equation. Assuming uncorrelated3n and a Gaussian distribution ofP(3), the
time-dependent probability densityf of the variableyn satisfies the Fokker–Planck equation

∂f

∂t
= −v

∂f

∂y
+ D

2

∂2f

∂y2
. (11)

To calculate the escape time for a giveny0 equation (11) is solved with the initial condition

f (t = 0, y) = δ(y − y0). (12)

One boundary condition is obtained by requiring thatf vanishes at the threshold

f (t, y = yth) = 0 (13)

wherey0 = ln r0 andyth = ln rth. The other boundary condition is obtained by incorporating
the random noise of equation (3). This requires a reflecting barrier[16], i.e. zero flow at
yb = ln rb:

J (t, y = yb) ≡ −vf + D/2
df

dy
= 0 (14)

whererb characterizes the noise amplitude(rb < r0 < rth). Now the escape time is obtained
from the probability density via†

τ = −
∫ ∞

0
dt t

∫ yth

y0

dy
∂

∂t
f (t, y) =

∫ yth

y0

dy

∫ ∞

0
dt f (t, y) (15)

† In [18] the escape time is synonymous forfirst passage time.
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and is easily determined since we do not needf itself but the time integral off only.
Integrating equation (11) overt and usingf (∞, y) = 0 we end up with a linear ordinary
differential equation forh(y) = ∫ ∞

0 dt f (t, y). Solving it we get the analytic expression for
the escape time

τ = z0

v
+ D

2v2
e−2vzb/D(1 − e2vz0/D) (16)

wherez0 = yth−y0 ≡ ln(rth/r0) andzb = yth−yb ≡ ln(rth/rb). According to considerations
presented in section 2, the averaged escape time (i.e. the escape time averaged over
reinjection positionr0) will show the same structure as the escape time (16) provided
we make the replacement suggested in equation (5). Taking into account that for diffusional
reinjectionvz0/D � 1, three regions ofv can be defined which depend on the sign ofv as
well as on the ratio of the ballistic timeτb and the diffusion timeτd. Here the diffusion time
τd = zb

2/D is the time needed by the system to reach the threshold due to diffusion when
starting at the noise level. A corresponding interpretation holds true for the ballistic time
τb = zb/|v|. Above the critical point (v > 0) the conditionτd � τb defines the ballistic
region with negligible diffusion. In this region the escape time depends onv as in the
noiseless case:

τ = z0v
−1 ≡ v−1 ln(rth/r0). (17)

Below the critical point (v < 0) one finds noise-induced metastability forτd � τb. In
this noise-controlled region the system stays a long time at the noise level until at last the
driving signal brings it to the threshold. The escape time in this case is determined by the
exponential tail of the distribution function

τ = −z0v
−1e−2vzb/D ≡ − ln(rth/r0)

v
(rth/rb)

−2v/D (18)

and it is finite for any finite value ofv. This is due to the Gaussian approximation which
corresponds to the unbounded driving signal. The shift of the exact intermittency onset due
to noise, discussed in [16], is related to the bounded driving signal. However, the escape
time in the region of the onset is very long for small noise. The region close to the noiseless
critical point is of practical interest in real and even numerical experiments. It should also
be pointed out that the exponential dependence of the noise-induced escape time for on–off
intermittency is determined by the distribution of the driving signal. It is not sensitive to
the distribution of the additive random noise. This is in contrast with the crisis induced
chaos–chaos intermittency when statistical properties of the noise are important and only
scaling is universal [20].

Exponential noise-induced escape time (18) and noiseless scaling (17) can be detected
only outside the crossover regionτd � τb. In the crossover region the escape is determined
by diffusion. At the critical pointv = 0 the escape time

τ = 2z0zbD
−1 ≡ 2D−1 ln(rth/r0) ln(rth/rb) (19)

increases to infinity with the decrease of noiserb only logarithmically. The same slow
dependence also characterizes the width of the crossover region

v∗ = 2D

zb
≡ 2D

ln(rth/rb)
. (20)

The transition between ballistic and noise-controlled regions is smooth in the Gaussian case
due to this wide crossover region.

4. Numerical examples

Using equations (3) and (4) the escape timeτ was determined numerically by averaging
the number of iterations needed for the system to pass the thresholdrth after starting from



16 A Čenys and H Lustfeld

the initial valuer0. When passingrth during one run the value ofr was reset tor0 without
resettingx of the mapF . All results presented below are obtained for the uncorrelated
noiseηn in equation (3) uniformly distributed in the interval [−rnoise, rnoise]. They are very
close to results obtained for the noise with Gaussian distribution.

In the first example the choice forF is the skewed tent map

F(x) =
{

x/p x 6 p

(1 − x)/(1 − p) p < x 6 1
(21)

and the choice for the driving signalg is† g ≡ a dF/dx. Comparison with the analytic
results is easy because9(3), corresponding to the scaling function of the local Lyapunov
exponents, can be calculated analytically [19]. For parameterp = 0.3 it can be well
approximated by a Gaussian parabola with the cut-offs for both positive and negative3.
ParameterD in (16), corresponding to the dispersion of variable3, is calculated numerically
from the formulae at the end of section 2. As can be seen from figure 1 the numerically
calculated escape time agrees well with formula (16) in a wide region around the critical
point. Below the critical point the noise-controlled region with an exponential dependence
on v can be detected. An exact agreement cannot be expected due to replacement of the
real additive noise by the reflecting boundary condition in the analytic calculation. The
proportionality coefficient between the noise amplitudernoise and the barrier positionrb

depends on the noise properties and serves as a fitting parameter. The estimated escape
time does not depend on the threshold valuerth, if starting pointr0 and noise amplitude
rnoise are rescaled correspondingly. This holds true for the linear structure of equation (3)
but it has also been verified numerically for this more general case.

Figure 1. Escape time against the deviation from the critical point,v, for the skewed tent
map with p = 0.3: starting pointr0 = 0.001, threshold valuerth = 0.005, noise amplitude
rnoise = 0.0001. The full curve corresponds to the analytic result (16) withD = 0.15.

In the second example we take forF the Henon mapxn+1 = 1 + 0.3xn−1 − 1.4x2
n

and forg the linear mapg ≡ axn. The numerically calculated function9(3) is shown in
figure 2. It can be approximated by a Gaussian parabola with a numerically obtainedD only
in the narrow region close to the maximum. As a result the escape time can be described
only above the critical point by equation (16) valid for Gaussian approximation. This is

† This choice of the functiong is appropriate when discussing coupled identical one-dimensional maps [14].
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shown in figure 3. The noise induced escape time essentially depends on the deviations
from the Gaussian distribution. To demonstrate this we have also calculated the escape
time for (g ≡ ax−1

n in equation (1)). This corresponds to a changed sign of3 in 9(3).
Considering that the escape time is essentially determined by positive3, the correlation
below the critical point between9(3) and the escape time can easily be seen in figure 3.

Figure 2. Function9(3) calculated numerically withN = 50 for the Henon map. Close to
the maximum it is approximated by the Gaussian parabola withD = 0.169.

Figure 3. Escape time for the Henon map: dots, driving signalxn; triangles, driving signalx−1
n .

The full curve corresponds to the analytic result (16).

In the last example we again take forg the linear map and forF the logistic map at
fully developed chaosxn+1 = 1 − 2x2

n. This yields a non-analytic function9(3) [21]

9(3) =
{

−|λ| 3 6 ln 2

−∞ 3 > ln 2.
(22)

Here the distinguishing feature of the escape time as a function ofv is a sharp transition
between ballistic behaviour above the critical point and noise-controlled behaviour below
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the critical point (cf figure 4). In contrast to the Gaussian case the crossover region is very
narrow for small noise amplitudes. The peculiarities of the escape time in the non-Gaussian
case are discussed in the next section.

Figure 4. Escape time for the logistic map at different noise amplitudesrnoise: dots, 0.001;
triangles, 0.0003; squares, 0.0001.

5. The non-Gaussian case

As seen from the numerical examples the noise-controlled regime is most sensitive to
deviations from the Gaussian distribution. In this regimev is negative and large enough
that starting from the initial point the system quickly reaches the noise level with high
probability. The escape time in this case is determined by the small probability to reach the
threshold from the noise level due to the driving chaotic signal. Neglecting higher order
terms describing probabilities for reaching the threshold more than once or for staying in
the region above threshold, probability and escape time can be approximated as

τ−1 ∼
∞∑

n=1

∫ ∞

(zb/n)−v

P (3) d3. (23)

The integral in (23) gives an estimate of the probability to reach the threshold from the
noise level after exactlyn iterations. Taking into account that the fast decaying function
(10) has its largest value at the lower limit of integration and replacing the summation over
n by an integration one obtains

τ−1 ∼
∫ ∞

0
exp[n9(zb/n − v)] dn ∼ exp[n∗9(zb/n∗ − v)]. (24)

Here the saddle point valuen∗ has to be determined from the relation

n∗9(zb/n∗ − v) = zb9
′(zb/n∗ − v). (25)

For the Gaussian approximation of9(3) the result of equation (24) together with
equation (25) gives the same exponent as obtained from the analysis based on the
Fokker–Planck equation, equation (18). However, equation (24) can be applied to the
general functions9(3) including those having a non-analytic maximum. In the case
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9(3) = −c|3|α it gives

n∗ = v−1zb(1 − α) (26)

τ ∼ exp[cαzb{αv/(1 − α)}α−1]. (27)

Note that forα = 2 the exponent corresponds to that of equation (18).
The above approximation is valid only if the saddle point valuen∗ is positive and large.

For small values ofn∗, expression (10) for the probability distributionP(3) based on the
central limit theorem is not valid. Due to this limitation, formula (27) can be applied only
for α > 1. The numerically studied logistic map represents the marginal caseα = 1. Since
for the logistic map9(3) has a cut-off at3 = ln 2 it follows from equation (27)

τ ∼ ezb(1−v/ ln 2) |v| � ln 2. (28)

Note that an exponential increase of the escape time as a function ofv is predicted for
negativev. This is confirmed by the numerical calculations presented in figure 4.

The above expressions for the escape time are valid only in the noise-controlled region
where the escape time is large. The scaling of the limiting value|v−| at which the crossover
region begins can be estimated from the conditionτ ∼ 1

|v−| ∼ (zb)
−1/(α−1) ≡ (ln rth/rb)

−1/α−1. (29)

In the ballistic region above the critical point, typical trajectories reach the threshold from
the initial point without coming close to the noise level. In this case the escape time
depends only on the average exponential growth and details of the probability function
are not important. For both Gaussian and non-Gaussian probability distributions the
escape time is described by expression (17), valid in the noiseless case. The probability
to reach the noise level during the escape is proportional to the probability of finding
3 6 −v(zb/z0 + 1) ≈ −vzb/z0. For the above non-analytic function9, according to
equation (10) this probability is proportional to

e−zb(vzb/z0)
α−1

. (30)

Consequently the limiting value for the ballistic regime|v+| scales as

|v+| ∼ zb

z0
(zb)

−1/(α−1). (31)

The valuesv− andv+ define the width of the crossover region for the general non-Gaussian
case. Now the additive noise amplitude is proportional torb. Therefore the width of the
crossover region is not a function of the noise amplitude but a function of the logarithm
of the noise amplitude. This explains why in the vicinity of the critical point already very
small additive noise becomes essential and ensures the smooth transition of the escape
time behaviour between the ballistic region and the noise-controlled region. However, for
α → 1 the width of the crossover region goes to zero and one should observe a sharp phase
transition like behaviour. This can be seen in figure 4 for the marginal caseα = 1 of the
logistic map. It turns out that in the particular case of the logistic map the crossover region
is proportional to the amplitude of small additive noise.

6. Conclusions

In this paper we have studied how the escape time depends on the control parameter for noisy
on–off intermittency. We have shown that additive noise, unavoidable in any experiment,
is relevant destroying the power-law dependence in a wide region around the critical point.
The width of this crossover region decays only logarithmically with the decrease of the noise
amplitude. Power-law behaviour with exponent−1—valid for the noiseless case—can be
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observed above the critical point outside the crossover region only. Below the critical point,
noise-induced metastability is found. The escape time dependence on the control parameter
in this noise-controlled region depends on the statistical properties of the driving chaotic
signal. In the case of Gaussian approximation universal exponential dependence can be
observed. It is determined by the analytic maximum in the function9(3). Exponential
dependence can be observed for very small noise even if the tails of9(3) deviate from
the Gaussian ones. Escape times have also been estimated in the noise-controlled region
for non-analytic functions9(3).
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[11] Čenys A 1993Europhys. Lett.21 407
[12] Yu l, Ott E and Chen Q 1990Phys. Rev. Lett.65 2935
[13] Yu l, Ott E and Chen Q 1991Physica53D 102
[14] Pikovsky A S and Grassberger P 1991J. Phys. A: Math. Gen.24 4587
[15] Hammer P W, Platt N, Hammel S M, Heagy J F and Lee B D 1994Phys. Rev. Lett.73 1095
[16] Platt N, Hammel S M and Heagy J F 1994Phys. Rev. Lett.72 3498
[17] Ott E et al 1994Physica76D 384
[18] Stratonovich R L 1963Topics in Theory of Random Noisevol I (New York: Gordon and Breach)
[19] Eckmann J-P and Procaccia I 1986Phys. Rev.A 34 659
[20] Sommerer J C, Ott E and Grebogi C 1991Phys. Rev.A 43 1754
[21] Grassberger P, Badii R and Politi A 1988J. Stat. Phys.51 135


